Generalized Solutions of the Cauchy Problem for a Ionlinear Functional Partial Differential Equation
نویسندگان
چکیده
منابع مشابه
on the goursat problem for a linear partial differential equation
in this paper, the goursat problem of a general form for a linear partial differential equation is investigated with the help of the riemann function method. some results are given concerning the existence and uniqueness for the solution of the suggested problem.
متن کاملApproximate solutions of homomorphisms and derivations of the generalized Cauchy-Jensen functional equation in $C^*$-ternary algebras
In this paper, we prove Hyers-Ulam-Rassias stability of $C^*$-ternary algebra homomorphism for the following generalized Cauchy-Jensen equation $$eta mu fleft(frac{x+y}{eta}+zright) = f(mu x) + f(mu y) +eta f(mu z)$$ for all $mu in mathbb{S}:= { lambda in mathbb{C} : |lambda | =1}$ and for any fixed positive integer $eta geq 2$ on $C^*$-ternary algebras by using fixed poind alternat...
متن کاملExistence of positive solutions for a boundary value problem of a nonlinear fractional differential equation
This paper presents conditions for the existence and multiplicity of positive solutions for a boundary value problem of a nonlinear fractional differential equation. We show that it has at least one or two positive solutions. The main tool is Krasnosel'skii fixed point theorem on cone and fixed point index theory.
متن کاملExistence of positive solutions of the Cauchy problem for a second-order differential equation
In this paper we consider the equation u (t) = f (t, u(t), u (t)) and prove the unique solvability of the Cauchy problem u(0) = 0, u (0) = λ with λ > 0.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Zeitschrift für Analysis und ihre Anwendungen
سال: 1988
ISSN: 0232-2064
DOI: 10.4171/zaa/289